SARSAT Beacon Manufacturer's Workshop September 28, 2012

Next Generation SARSAT Space Segment MEOSAR

Prepared by: Chris O'Connors NOAA/NESDIS

Agenda

- MEOSAR Overview
- Space Segment
- Ground Segment
- MEOSAR POC
- MEOSAR Timeline
- Demonstration and Evaluation
- IOC and FOC Look Ahead

MEOSAR Overview

MEOSAR Overview

MEOSAR Concept

- Utilize multiple satellites with SAR repeaters, or "bent pipe"
- Multiple antennas are used to receive the same beacon burst
- The time difference of arrival (TDOA) and frequency difference of arrival (FDOA) is then used to determine location
- One burst, received through 3 unique satellites, is capable of producing a location
- Essentially, GPS location in reverse

MEOSAR Overview

- Medium Earth Orbit (MEO) SAR / GPS
 - Various studies determined that medium-earth orbiting (MEO) satellites provide a vastly improved space-based distress alerting and locating system.
 - NASA, with USAF Space and Air Combat Command, NOAA, and USCG are developing a capability on GPS satellites— SAR/GPS

• MEOSAR provides

- A combination of the best assets of GEOSAR and LEOSAR
- Near instantaneous notification and location of distress
- Near 100% Availability
- Better location accuracy
- Global coverage
- Full compatibility with current and future beacons

Space Segment

- Repeaters will be flown on Medium Earth Orbit (MEO) satellites
- Will utilize 3 Global Navigation Satellite System (GNSS) constellations
 - GPS (USA)
 - GLONASS (Russia)
 - Galileo (ESA)
- Current plan is to have 24 US MEOSAR instruments
- 72 MEOSAR instruments total

MEO vs. LEO Coverage

US MEOSAR Ground Segment Design

Ground Segment

- Prototype ground station at NASA Goddard Space Flight Center
 - 4 antennas capable of independently tracking 4 satellites
 - Proof of Concept testing successfully completed in 2008
 - May become future operational MEOLUT
 - Full participation in MEOSAR
 D&E testing

Ground Segment

- Accepted MEOLUT Wahiawa, Hawaii
 - 6 antenna capable of tracking 6 satellites either S-band or L-band
 - Constructed in September 2011 and passed acceptance testing
- Future MEOLUT in Miami, Florida
 - 6 antenna capable of tracking 6 satellites either S-band or L-band
 - Award by end of Sept 2012
 - Construction will begin Sept 2013, completed by Dec 2013

Distress Alerting Satellite System (DASS) Proof-of-Concept only

- DASS Proof-of-Concept (POC) Space Segment
 - Ten current on-orbit GPS Block IIR and IIF satellites carry DASS repeaters (Max of 20 satellites)
 - POC system uses existing GPS. Downlink at S-Band (Not ITU-allocated for SAR, but may possibly be used operationally)
- Proof-of-Concept results to date:
 - Demonstrated ability to locate beacons to greater than current
 Cospas-Sarsat accuracy using three or more satellites
 - System meets/exceeds theoretical capabilities
 - Tests are on-going

									_															
Projected	CY 2012			CY 2013			CY 2014			CY 2015			CY 2016			CY 2017								
Launch dates as of 19 Sep 12	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
GPS IIF Space Segment																								

Figure 1: GPS IIF Launch Schedule

MEOSAR Timeline

US MEOSAR Timeline

- Phase I Installation of Hawaii MEOLUT
- Phase II Networking of Data
- Phase III MEOSAR D&E

- Goals
 - Characterize technical and operational performance
 - Evaluate operational effectiveness
 - Provide basis for recommendations on the integration of MEOSAR system into C/S
 - Basis for commissioning criteria

15

- Technical tests
 - Processing threshold and system margin
 - Impact of interference
 - Valid and complete message acquisition
 - Location accuracy
 - System Capacity
 - Networked MEOLUT advantage
 - Combined MEO/GEO performance

* Multiple beacons needed, distributed globally, to 10/2/2012 successfully complete D&E testing

- Operational Tests
 - Time advantage
 - Unique detections
 - Volume of ground segment traffic
 - SAR/Galileo RLS
 - Direct and indirect benefits of MEOSAR system

MEOSAR Timeline

MEOSAR Constellation

		D&E Phase I	D&E Phase II		D&E Phase III	ЮС			FOC
	31 Dec 2011	31 Dec 2012	30 Jun 2013	31 Dec 2013	30 Jun 2014	31 Dec 2014	31 Dec 2015	31 Dec 2016	31 Dec 2017
DASS (S-Band) Planned	(10)	5 (15)	2 (17)	3 (20)	0 (20)	0 (20)	0 (18) †	0 (15) [†]	0 (14) [†]
DASS (S-Band) Practical	(10)	1 (11)	1 (12)	1 (13)	1 (14)	1 (15)	2 (15) [†]	2 (14) [†]	1 (14) [†]
SAR/GPS									
SAR/Galileo*		2 (2)	2 (4)	4 (8)	4 (12)	4 (16)	8 (24)	0 (24)	0 (24)
SAR/GLONASS	1 (1)	1 (2)	0 (2)	0 (2)	0 (2)	1 (3)	1 (4)	3 (7)	6 (13)
L-Band Total	1	4	6	10	14	19	28	31	37
L+S-Band Total (Practical)	11	15	18	23	28	34	43	45	51

* - Galileo launches based roughly on outside dates as provided in JC-26/Inf.17
 † - GPS Block II satellites removed from totals after projected 12-year life
 Anticipated MEOSAR Space Segment

Participating MEOLUTs D&E Phase I

Participating MEOLUTs D&E Phase I: 1 January 2013 (Minimum 4+ L/S Band Visibility 78.0%)

MEOLUTs at IOC

MEOLUTs at IOC: 1 January 2015

Anticipated Operational MEOLUTs at FOC

MEOLUTs at FOC: 1 January 2018

- T-5 Independent 2D Location Capability for Operational Beacons
 - Requesting from manufacturer operationally coded EPIRBS, ELTS, PLBS with 121.5 MHz disabled but GPS enabled
 - 2 of each type, prefer multiple manufacturers total of [20] beacons

Contact Information

SARSAT Program Office NOAA Satellite Ops Facility Suitland, MD 20746

www.sarsat.noaa.gov

Christopher O'Connors 301-817-3846 Christopher.O'Connors@noaa.gov